Eje temático: Ordenación, gestión, riesgos y vulnerabilidad

Efectos territoriales del tsunami del 27 de Febrero de 2010 en la costa de la Región del Bio-Bío, Chile

Geógrafo Dra. Carolina Martínez¹, Profesor de Hist. y Geog. Octavio Rojas¹, Profesora de Hist. y Geog. Dra. Edilia Jaque¹, Geólogo Dr. Jorge Quezada², Geógrafo Daniela Vázquez¹ e Ingeniero Dr. Arturo Belmonte³

¹Depto. de Geografía Facultad de Arquitectura, Urbanismo y Geografía <u>carolmartinez@udec.cl</u> ocrojas@udec.cl daniela.wsk@gmail.com

²Depto. Ciencias de la Tierra, Facultad de Ciencias Químicas <u>jquezad@udec.cl</u>

³Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas <u>abelmonte@dgeo.udec.cl</u>

Universidad de Concepción Víctor Lamas Nº 1290, Barrio Universitario s/n, Concepción, Chile. Casilla 160-C

Proyecto FI Nº 209.603.010-1.0

I. INTRODUCCION

Los estudios de riesgos naturales son aspectos claves en la Planificación Territorial al incorporar criterios científicos y herramientas de manejo para orientar la expansión urbana, la zonificación de usos de suelo y mitigación de catástrofes.

A pesar de la alta recurrencia histórica de sismos tsunamigénicos en Chile, aún la incorporación de los estudios de riesgos naturales a los instrumentos de planificación territorial es una actividad incipiente y solo cobra importancia al producirse hechos catastróficos como el reciente terremoto Mw=8,8 y posterior tsunami ocurrido el pasado 27 de Febrero de 2010, que afectó gran parte de la costa chilena. Por su magnitud, el desastre provocado incluyó varias otras áreas de la cuenca del Pacífico, este evento pasó a integrar la lista de los cinco mayores terremotos tsunamigénicos del mundo. De este modo, Chile cuenta con dos de los cinco eventos sísmicos más grandes de la historia: 21-22 de mayo de 1960 (de magnitud M=9,5) y 27 de febrero de 2010.

En esta contribución, se presentan los primeros resultados del estudio interdisciplinario "Evaluación del Riesgo de Tsunami en la costa de la Región del Bio-Bío: criterios para la Planificación Territorial" que desarrollan actualmente los Departamentos de Geografía, Ciencias de la Tierra y Geofísica de la Universidad de Concepción, como medio de contribución al proceso de reconstrucción que vive esta región de Chile centro-sur, considerada como una de las más afectadas por el evento del 27/F de 2010.

Este estudio se está realizando en las localidades más afectadas por el reciente terremoto M=8,8 y tsunami del 27/F de 2010 en la Región del Bio-Bío (37°S) entre las cuales destacan: Tirúa, Lebu, LLico, Tubul-Raqui, Arauco, Laraquete, Coliumo y Dichato. Todas estas localidades corresponden a sectores socio-económicamente deprimidos en relación con el resto del territorio nacional y la mayoría carecía de estudios de riesgos específicos y planes de emergencia locales al momento de generarse el sismo.

Los objetivos generales de este estudio se enmarcan por lo tanto en el objetivo institucional de facilitar la pronta reconstrucción de las ciudades y la relocalización de los asentamientos a través de una Planificación Territorial adecuada, fundamentada en criterios técnico-científicos que incluya como elemento central la consideración de los estudios básicos de riesgos naturales, principalmente por tsunami.

Se considera aquí que el establecimiento de la línea de inundación por tsunami, es un criterio básico para la revisión del Plan Regulador Comunal (PRC) vigente en las áreas afectadas por el tsunami reciente, con el fin de proponer las modificaciones necesarias al instrumento. Además, estas actividades han posibilitado generar estudios de vulnerabilidad para diferentes localidades de la región, comparando escenarios pre y post tsunami para generar mapas de riesgo por tsunami para eventos de similares características, que sirvan posteriormente como instrumentos de gestión del riesgo. Así a la fecha, se han generado estudios

de vulnerabilidad por tsunami a través de seminarios de tesis de pregrado de la carrera de Geografía de la Universidad de Concepción para la ciudad de Lebu (Luciano Rodríguez, 2010), la localidad de Arauco (Paulina Flores, 2011) y actualmente en desarrollo los estudios para las ciudades de Coliumo, Dichato, Tomé, Talcahuano, Tirúa, Laraquete y Llico. En todas estas áreas se ha considerado como escenario extremo el evento del 27/F de 2010.

El desarrollo de este estudio comprende cinco etapas, de las cuales se presentan aquí parte de los resultados de las etapas a) y c):

- a) Efectos geomorfológicos y territoriales del tsunami del 27/F
- b) Análisis de peligrosidad por tsunami (modelamiento numérico)
- c) Análisis de vulnerabilidad por tsunami
- d) Zonificación del riesgo por tsunami
- e) Proposición de medidas de manejo

II. MATERIALES Y METODOS

2.1. Área de estudio:

La Región del Bio-Bío, Chile (36°S) constituye el tercer conglomerado urbano del país con una población de 1.851.562 habitantes (12,3% del total nacional), de la cual el 82% es urbana. Concepción Metropolitano ha sido desarrollado históricamente en torno al eje costero. De las 54 comunas que forman la región, 14 corresponde a comunas costeras, las que agrupan al 51% de la población regional, mientras que las principales actividades económicas se asocian con alguno de los cinco puertos localizados entre el Golfo de Arauco y la Bahía de Concepción, interviniendo unos 350 km de línea litoral (Fig. 1).

La costa de la Región ha sido afectada de manera recurrente por eventos tsunamigénicos de magnitud superior a 8.0 (Tabla Nº1), donde destacan los

terremotos de 1960 y 2010 considerados entre los cinco más destructivos de la historia de la humanidad. Los eventos de magnitud sobre M=8,5 correspondientes a 1730, 1835, 1960 y 2010 son considerados los más destructivos ya que produjeron efectos devastadores en la costa del país y los tsunamis generaron alturas de ola entre 3,0 m y 30 m. De estos, los tres últimos se generaron próximos a la costa de la región.

2.2. Procedimientos:

Luego de este catastrófico evento, inmediatamente se realizaron varias campañas de reconocimiento orientadas a realizar preliminarmente el levantamiento topográfico de la máxima distancia de propagación del tsunami, establecer el runup de la ola y conocer los efectos geomorfológicos y territoriales en la costa de la región (primera etapa del estudio). Mediante encuestas a lugareños y evidencias in situ, se determinó el run-up de la ola y la distancia de propagación, se catastraron los efectos sobre la población y se identificaron los sectores de mayor impacto del tsunami. Los alzamientos cosísmicos verticales para el evento sísmico fueron determinados mediante indicadores biológicos e instrumentalmente mediante GPS. Los resultados de estas últimas mediciones junto a los efectos geomorfológicos fueron informados en la publicación de Quezada et al. (2010). Posteriormente, estas líneas de inundación preliminares fueron corregidas a través de levantamientos topográficos de detalle mediante uso de GPS diferencial simple frecuencia marca Trimble, vinculado a la estación geodésica TIGO (Observatorio Geodésico Integrado Transportable), localizada en la ciudad de Concepción. Utilizando el software Pathfinder Office, se obtuvieron errores horizontales inferiores a 30 cm. Estos datos fueron incorporados a Sistema de Información Geográfico (SIG ARGIS 9.0) para su representación.

Para analizar los efectos territoriales asociados al tsunami en las diferentes localidades, se utilizó el Informe Cartográfico de Daños ocasionado por Terremoto

y Tsunami del 27/F de 2010, del Instituto Nacional de Estadísticas (INE), utilizándose datos de población y viviendas afectadas.

Los análisis de vulnerabilidad por tsunami para casos específicos, fueron realizados para las localidades de Lebu y Arauco. Se comparó el escenario pretsunami utilizando datos del Censo 2002 y pos-tsunami a través de las encuestas pobladores de las localidades. Para ello se obtuvieron estadísticamente significativas aplicadas a unidades de análisis previamente establecidas. Se analizó la vulnerabilidad física, educativa, socioeconómica y organizacional de acuerdo con las variables: uso de suelo, población, calidad de las construcciones, nivel de ingresos, actividad económica, nivel de información o conocimiento sobre tsunami en la población, presencia o ausencia de planes de evacuación. Estas variables fueron tabuladas y jerarquizadas en forma de matrices con el objeto de ponderarlas para su uso en SIG mediante algebra de mapas, obteniéndose cartas de vulnerabilidad global.

BORDE COSTERO
REGION DEL BIO BIO

N
Dichato

Concepción

Golfo
de
Arauco
Laraquete
Llico
Tubul
Arauco

Región
del
Bio Bio

Figura Nº 1. Áreas afectadas por el tsunami M=8.8 del 27/F de 2010

Tabla Nº 1. Sismos tsunamigénicos históricos en la costa de Chile centro-sur

Fecha	Localización	Magnitud	Run up (m)	Efectos
1562 (28 oct)	38°S- 73°W	8,0	16	El tsunami afectó la costa a lo largo de 1.200 km.
1570 (08 feb)	36,5°S – 74°W	8,5	4	2000 muertos debido al tsunami.
1575 (16 dic)	38,5°S- 74,5°W	8,5	4	Ciudades más afectadas fueron Valdivia, Osorno y Villarrica.
1657 (15 mar)	37°S – 72,8°W	8,0	4	Hubo unos 40 muertos y reiterados trenes de olas
1730 (08 jul)	32,5°S – 71,5°W	8,7	16	A pesar que el terremoto no se registró frente a las costas de la región, el tsunami generado es uno de los más devastadores de la historia en la región.
1751 (25 may)	36,5°S – 74°W	8,5	3,5	Tsunami destructivo, arrasó la costa de la región y alcanzó el archipiélago Juan Fernández. La ciudad de Concepción, localizada en Penco, tuvo que ser refundada en su actual sitio.
1835 (20 feb)	36,8°S – 73°W	8,0	15	La costa de la región fue asolada por el terremoto y tsunami posterior. En Concepción se registraron 60 muertos y 500 heridos.
1960 (20 may)	38,5°S- 74,5°W	9,5	15	2000 muertos, terremoto y tsunami devastador en la costa de Chile y Hawaii, Oceanía y Japón. Considerado el evento más catastrófico de la historia humana. El tsunami fue registrado en toda la cuenca del Pacífico.
2010 (27 feb)	36,2°S - 72,9°W	8,8	10	524 muertos. Efectos se registraron a lo largo de 500 km de costa y alcanzó el archipiélago Juan Fernández

Fuente: elaboración propia a partir de Quezada, J. www.shoa.cl y crónicas históricas.

III. RESULTADOS

a. Áreas de inundación por tsunami

A partir del levantamiento topográfico de la cota de inundación por tsunami para el evento del 27/F de 2010, se obtuvieron las áreas de inundación indicadas en la Tabla Nº2 para las diferentes localidades:

Tabla Nº2. Áreas de inundación por tsunami, altura de ola y alzamiento cosísmico, localidades Región del Bio-Bío (evento 27/F de 2010)

Localidad	Superficie (Km²)	Run up (m)	*Alzamiento cosísmico (m)	Máxima distancia propagación (m)	Características	
Coliumo	1,55	7	No perceptible	2.700		
Dichato	0,85	7 a 9	No perceptible	1.300		
Laraquete	0,69	3,5	0,5 +-0,1	800		
Arauco	3,59	>2		1.500		
Tubul-Raqui	1,69	12	1,4 +-0,1	1.200		
Llico	0,71	10	1,9 +-0,2	800		
Lebu	1,69	12	2 +-0,2	>1000		
Lirquén						
Penco		5		500		
Tomé		7			8 cuadras	
Caleta Tumbes		12	0,6 +-0,1	500		
Isla Santa María		6	2 +-0,2		Puerto norte	
Isla Mocha		30	0,25 +-0,05			
Pta. Lavapié		4,5	1,9 +-0,2			
Tirúa		30	0,6 +-0,2	1.600	400m por la orilla del río	

*Obtenido de Quezada et al. (2010)

De acuerdo con la Tabla Nº2, las mayores alturas de ola se relacionan con el sector occidental del Golfo de Arauco, donde los alzamientos cosísmicos fueron más relevantes (Lebu, Llico, caleta Tumbes), a excepción de isla Mocha y Tirúa. Como se observa en las Figuras Nº 2, 3, y 4 los trenes de ondas del tsunami ingresaron en la mayoría de los casos por cursos de agua locales alcanzando a través de ellos gran distancia al interior de la costa. En Dichato, Laraquete, Tubul-Raqui y Coliumo el tsunami bordeo las pequeñas paleobahías a través de esteros y humedales desarrollados como resultado de la herencia morfogenética de la región, por lo cual estas unidades facilitaron el ingreso de este.

La mayor altura de ola se registró en Tirúa e isla Mocha en el extremo sur de la región donde alcanzó los 30m. Después de registrado el terremoto, las horas de arribo de la primera ola fue muy fluctuante entre las localidades: cerca de 40 minutos en Talcahuano (ola 3m) y Tirúa; cuatro horas en Dichato.

Figura Nº2. Localidades de Arauco y Laraquete (Golfo de Arauco)

Figura Nº 3. Bahía de Tubul-Raqui (Golfo de Arauco)

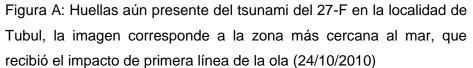


Figura B: Reubicación de población afectada por el tsunami del 27-F, el emplazamiento provisorio corresponde a una zona inundada por dicho evento (24/10/2010).

Figura Nº 4. Localidad de Llico (Golfo de Arauco)

Figura A: Línea de basura dejada por el tsunami del 27-F en la localidad de Llico, acceso proveniente desde Tubul. Evidencia aún presente en el mes de noviembre de 2010.

Figura B: Evidencias del avance del tsunami del 27-F en Llico. Se aprecia parte de la vegetación aún quemada y basura dejada por el avance de la ola.

Figura C: Trabajo de campo con pobladores en la validación del límite del tsunami del 27-F en la localidad de Llico.

De acuerdo con las Figuras Nº 5 y 6, las áreas de inundación fluctuaron entre 3,6 Km² en Arauco y 0,69 Km² en Laraquete. Por su exposición al tsunami (proveniente del norte), las localidades de Coliumo, Lebu y Tirúa que con presencia de cursos de agua con orientación norte-sur fueron las que registraron la máxima distancia de propagación del tsunami, alcanzando hasta 2,7 km en Coliumo.

Figura Nº 5. Áreas de inundación, tsunami del 27/F de 2010 en las localidades de Dichato, Coliumo, Arauco y Laraquete (Región del Bio-Bío)

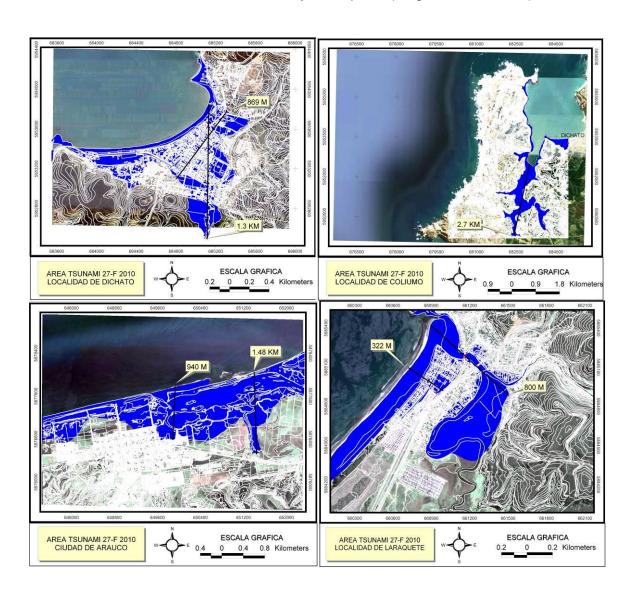
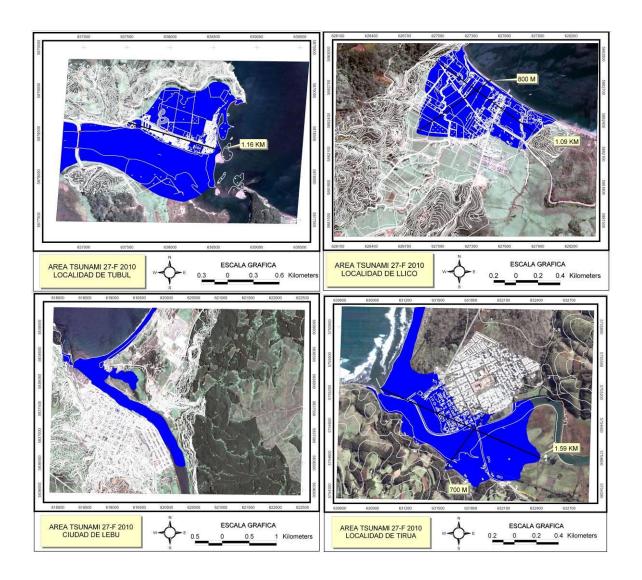



Figura Nº 6. Áreas de inundación, tsunami del 27/F de 2010 en las localidades de Tubul, Llico, Lebu y Tirúa (Región del Bio-Bío)

b. Efectos territoriales del tsunami

Las localidades más afectadas por el tsunami fueron Dichato, Tubul-Raqui, Llico y Lebu (Tabla Nº3). Cerca del 50% de las viviendas fueron destruidas en Dichato y Llico, mientras que en Lebu a pesar de tener más población, la protección de las riberas del río encauzó el tsunami hacia el interior sin provocar daños mayores en las viviendas, sin embargo el muelle artesanal fue destruido debido al alzamiento

de 2m que experimentó la costa en el sector, provocando cambios en el nivel de base del río, lo cual generó que unas 200 embarcaciones quedaran varadas. En Laraquete, el tsunami ingresó por el cauce del río, llegando a las viviendas del sector norte del río. En el sector sur, las olas impactaron con mayor potencia abarcando un área de inundación mayor, la que se extendió hasta la línea férrea presente en la localidad. La zona de humedales, fue de ayuda para mitigar el impacto del ingreso del agua por el cauce.

En Arauco no se presentaron mayores daños debido al efecto mitigador de los humedales asociados al estuario del río Carampangue y a la protección del cordón dunario que antecede el casco urbano. Solamente se evidencia ingreso del flujo en algunos sectores de la ciudad.

Tabla Nº 3. Efectos territoriales del tsunami del 27/F de 2010 en localidades de la Región del Bio-Bío

Localidad	Área total	Área	Población	Población	Viviendas	Viviendas
	(Km ²)	afectada	total	afectada	total	afectadas
		(Km²)				
Dichato	2,18	0,58*	3869	1617	1817	958
Lebu	4,04	0,15*	21707	87	5695	21
Tubul		0,35*	3049	-	451	-
Laraquete	1,15	0,20*	5660	860	1307	198
Llico	1,5	0,6*	792	-	231	157
Talcahuano	46,74	11,04	179612	32566	44338	9173

Fuente: INE, 2010 www.ine.cl *área corresponde a zona presentada en la cartografía

Para el caso específico de Lebu, el análisis de vulnerabilidad por tsunami (Rodríguez, 2010), estableció que el 16% de la superficie total presenta alta vulnerabilidad física afectando principalmente viviendas localizadas próximas a las riberas del río que están constituidas por materiales ligeros (Figura Nº 7). La vulnerabilidad global estableció que el 17% de la superficie comunal presenta vulnerabilidad baja, áreas que coinciden con una mejor calidad de las viviendas y mejor información organizacional de la población frente a emergencias de tsunami. El 16,9% del área presenta vulnerabilidad media, mientras que el 26% presenta

vulnerabilidad alta asociada a sectores de menores ingresos y con dependencia de la actividad pesquera y un fuerte desconocimiento sobre vías de evacuación y programas de emergencia frente a tsunami (Figura Nº8).

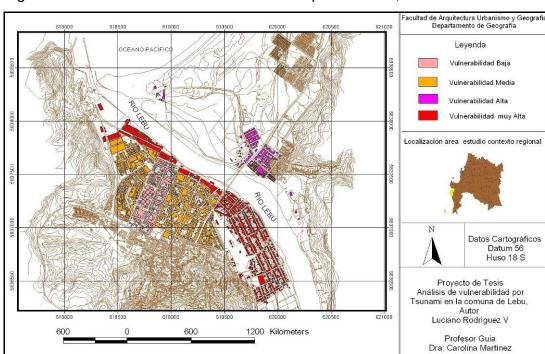
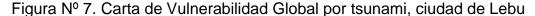
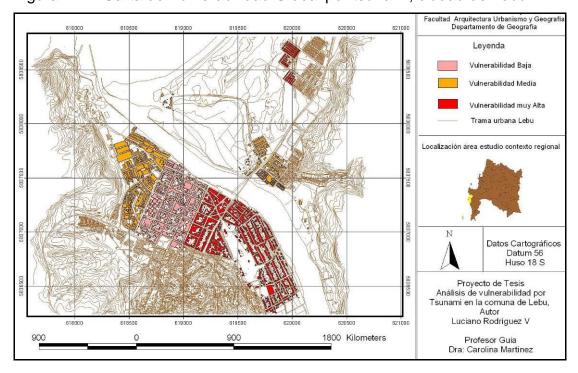




Figura Nº 7. Carta de Vulnerabilidad Física por tsunami, ciudad de Lebu

IV. CONCLUSIONES

El tsunami del 27/F en la costa de la Región del Bío-Bío generó alturas de ola entre 3 y 30m. El ingreso del tsunami a la costa fue favorecido por la presencia de cursos de agua locales. Los efectos geomorfológicos principales se expresaron en cambios en el nivel de base de los ríos (Lebu y Tubul-Raqui) donde la costa experimentó alzamientos de hasta 2m. En estos sectores se crearon playas de hasta 100m de ancho.

Las localidades más afectadas por el tsunami fueron Dichato, Tubul-Raqui, Llico y Lebu. En las tres primeras, el 50% de la población fue afectada y las viviendas destruidas, mientras que en Lebu la principal actividad económica asociada a la pesca artesanal fue erradicada debido al cambio de nivel de base del río Lebu.

Es prioritario que los estudios de riesgo principalmente a través de microzonificaciones, sean incorporados a la Planificación Territorial de manera efectiva con el propósito de disminuir las consecuencias negativas que provocan estos fenómenos.

V. REFERENCIAS

Quezada. J.; Jaque, E.; Belmonte, A.; Fernández, A.; Vásquez, D. y C. Martínez. 2010. Movimientos cosísmicos verticales y cambios geomorfológicos generados durante el terremoto Mw=8,8 del 27 de Febrero de 2010 en el centro-sur de Chile. Revista Geográfica del Sur, vol. 1 Nº 2, pp. 11-45.

Rodríguez, L. 2010. Análisis de Vulnerabilidad por tsunami en la ciudad de Lebu, Región del Bio-Bío. Tesis para optar al título de Geógrafo. Universidad de Concepción, Facultad de Arquitectura, Urbanismo y Geografía, Depto. de Geografía. 140 pp.